Hamilton-Jacobi-Bellman formalism for optimal climate control of greenhouse crop

نویسندگان

  • Ilya Ioslovich
  • Per Olof Gutman
  • Raphael Linker
چکیده

The paper describes a simplified dynamic model of a greenhouse tomato crop, and the optimal control problem related to the seasonal benefit of the grower. A HJB formalism is used and the explicit form of the Krotov–Bellman function is obtained for different growth stages. Simulation results are shown. © 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

Optimal Control of Crop Irrigation based on the Hamilton-Jacobi-Bellman Equation

Water management in agriculture is a key issue due to the increasing problem of water scarcity worldwide. Based on the recent progress in the dynamic modeling of plant growth in interaction with the water resource, our objective is to study the optimal control problem of crop irrigation. For this purpose, we first describe the LNAS model for sugar beet growth, driving the dynamics of both plant...

متن کامل

Nonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot

This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...

متن کامل

Approximations to Optimal Feedback Control Using a Successive Wavelet Collocation Algorithm

Wavelets, which have many good properties such as time/freqency localization and compact support, are considered for solving the Hamilton-Jacobi-Bellman (HJB) equation as appears in optimal control problems. Specifically, we propose a Successive Wavelet Collocation Algorithm (SWCA) that uses interpolating wavelets in a collocation scheme to iteratively solve the Generalized-Hamilton-Jacobi-Bell...

متن کامل

s . ge n - ph ] 9 M ay 2 00 5 Path integrals and symmetry breaking for optimal control theory

This paper considers linear-quadratic control of a non-linear dynamical system subject to arbitrary cost. I show that for this class of stochastic control problems the non-linear Hamilton-Jacobi-Bellman equation can be transformed into a linear equation. The transformation is similar to the transformation used to relate the classical Hamilton-Jacobi equation to the Schrödinger equation. As a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2009